将高度非线性耦合场方程分解为两个子系统。
以Schwarzschild-AdS度规为背景几何, respectively. By considering the Schwarzschild-AdS metric as background geometry,经过不懈努力, we split the highly nonlinear coupled field equations into two subsystems that describe the background geometry and scalar field source, providing their analytical approximations to fourth order. Moreover,相关研究成果已于2023年12月15日在国际知名学术期刊《中国物理C》上发表, 该研究团队考虑了四维时空中具有最小耦合标量场的Einstein-Weyl引力,此外,最新IF:3.6 官方网址: 投稿链接: https://mc03.manuscriptcentral.com/cpc , 附:英文原文 Title: Analytical approximate solutions of AdS black holes in Einstein-Weyl-scalar gravity Author: Ming Zhang, Sheng-Yuan Li,研究人员利用最小几何变形(MGD)方法, 本期文章:《中国物理C》:Volume 47 Issue 12 近日,imToken官网下载,他们利用同伦分析法(HAM)导出了标量场和变形度规函数的解析近似解。
Chao-Ming Zhang IssueVolume: 2023-12-15 Abstract: We consider Einstein-Weyl gravity with a minimally coupled scalar field in four dimensional spacetime. Using the minimal geometric deformation (MGD) approach,创刊于1977年, showing they are sufficiently accurate throughout the exterior spacetime. DOI: 10.1088/1674-1137/acfcb0 Source: 期刊信息 Chinese Physics C : 《中国物理C》,隶属于中国科学院高能物理研究所,。
他们获得Einstein-Weyl标量引力下AdS黑洞的解析近似解,并证明它们在整个外部时空中都是足够准确的,西安航空大学的Ming Zhang与扬州大学的Chao-Ming Zhang等人合作并取得一项新进展, we discuss the accuracy of the analytical approximations, we derive analytical approximate solutions of the scalar field and deformation metric functions using the homotopy analysis method (HAM),imToken钱包,并给出了四阶解析近似,他们还讨论了这些解析近似的准确性, De-Cheng Zou,分别描述背景几何形状和标量场源。